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a b s t r a c t

We discuss the implementation of the recently developed Langmuir slip model, which possesses a clearer
physical picture than the popularly used Maxwell slip model, for the lattice Boltzmann (LB) method to
capture velocity slip and temperature jump in microfluidics. The implementation of this scheme is
straightforward even when boundary walls do not run coincidentally along the lattice grids. Some previ-
ous LB boundary schemes for macroscopic thermal flows can be naturally recovered from the present
scheme when the Knudsen number Kn! 0. The feasibility and the capability of the present scheme
for thermal micro-flow simulations are explored by numerical experiments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of micro- and nano-devices in the
last decade, the fluid flow and heat transfer in such devices have
received a significant attention (Ho and Tai, 1998; Reese et al.,
2003; Darhuber and Troian, 2005). This is largely driven by the
need for new theoretical tools to accurately model micro- and
nano-scale physical processes and to design devices with enhanced
performance. As the different mechanisms behind the complicated
phenomenon in such devices are strongly intertwined, the experi-
mental study of a single mechanism is a difficult even impossible
task. Therefore, numerical simulations are attractive as they pro-
vide a controllable way to change a single property of fluid while
keeping the others unchanged.

In micro- and nano-devices, the gas molecular mean free path k
is comparable to the characteristics length H and the micro-flow is
usually described by the dimensionless parameter: Knudsen num-
ber Kn ¼ k=H. Theoretically, when Kn > 10�3, the continuum
hypothesis, which is the base of the Navier–Stokes (NS) equations,
is not valid any more. On the other hand, it is well accepted that
the Boltzmann equation can be used to model gas flows ranging
from the continuum regime Kn < 10�3 to free molecular regime
Kn > 10 and the direct solver of the full Boltzmann equation is reli-
able (Reese et al., 2003). Whereas, the required integral computa-
tion makes it rather complicated in coding whilst solving the
ll rights reserved.
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Boltzmann equation directly still remains a formidable challenge.
Until now most computer simulations have been performed using
the molecular dynamics (MD). For computational reasons the MD
is limited to length scales of tens of nanometers and time scales
of nanoseconds, which do not comply with the experimentally rel-
evant scales. Traditional numerical approaches for modeling high-
speed rarefied flow, such as the direct simulation Monte Carlo
(DSMC) method, are very inefficient for flows in micro- and
nano-devices because the mathematical difficulties associated
with the hypersonic rarefied flow regimes do not appear in micro-
fluidic flows whose speeds are relatively low (Reese et al., 2003).

Recently, the mesoscopic lattice Boltzmann (LB) method
developed from kinetic theory has been applied to study micro-
fluidic flows (Nie et al., 2002; Lim et al., 2002; Succi, 2002;
Zhang et al., 2005; Lee and Lin, 2005; Ansumali et al., 2006;
Ansumali and Karlin, 2005; Sofonea and Sekerka, 2005; Shan
et al., 2006; Kunert and Harting, 2007; Niu et al., 2007; Shi
et al., 2007; Szalmas, 2006; Verhaeghe et al., 2009; Tang et al.,
2008; Kim and Pitsch, 2008; Guo et al., 2008), to cite only a
few. Different from MD and DSMC schemes, the LB method is
more efficient intuitively in computation because its computa-
tional cost is comparable to that of the NS solvers (Chen and
Doolen, 1998). More important, it can be applied in wider region
theoretically (Succi, 2001). This method allows one to reach
experimentally relevant scales and preserves those interactions
needed to describe the underlying physics. With its strong theo-
retical foundation and numerical advantages, the LB method has
been taken as an ideal choice for simulating micro-flow dynamic
problems where both microscopic and macroscopic behavior are
important (Succi, 2001; Tian et al., 2007).
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mailto:shengchen.hust@gmail.com
mailto:zwtian@cug.edu.cn
http://www.sciencedirect.com/science/journal/0142727X
http://www.elsevier.com/locate/ijhff


228 S. Chen, Z. Tian / International Journal of Heat and Fluid Flow 31 (2010) 227–235
To date available open literature is mostly concerned with the
isothermal micro-flow. However, the studies using the LB method
on the thermal counterpart are quite sparse (Tian et al., 2006,
2007; Sofonea and Sekerka, 2005; Shu et al., 2005; Wang and Yang,
2006; Zhang et al., 2007; Kao et al., 2008). Sofonea and Sekerka
(2005) focused on the implementation of diffuse reflection bound-
ary conditions for a thermal finite difference LB model with multi-
ple speeds. Two series of relaxation time expressions (constant and
density dependent) were performed, compared with the analytical
velocity and temperature profiles. Flow and heat transport were di-
vided into two cases in simulation. Stationary heat transport be-
tween two planes at rest was studied without the influence of
flow. Moreover, an extra factor (1.15 is chosen) had to be added
to obtain better capture of the slip velocity. In Shu et al. (2005),
based on the kinetic theory and thermal LB model, a diffuse-scat-
tering boundary condition treatment was presented to capture
the velocity slip and temperature jump at wall boundaries. Wang
and Yang (2006) also studied micro-scale thermal flow using an
independent distribution function to simulate the temperature
evolution, and analyzed the two-dimensional heat transfer charac-
ter in micro-channels with different Kn. Tian and his cooperators
developed a scheme based on He’s thermal LB model (He et al.,
1998) to describe the effect of viscous heat dissipation in microflui-
dics. They validated their scheme by thermal micro-Poiseuille flow
(Tian et al., 2007) and thermal micro-Couette flow (Tian et al.,
2006). In their work it was showed that Kn is a parameter describ-
ing the character of micro-flow fluid, while the temperature jump
depends on the property of heat transfer much more. Kao et al.
used the lattice Bhatnagar–Gross–Krook (BGK) model with the
Boussinesq approximation to investigate mesoscopic natural con-
vection in rectangular cavities (Kao et al., 2008). The simulation re-
sults showed that unstable flow was generated at particular values
of the Rayleigh number, Knudsen number, and cavity aspect ratio.
More recently, in Zhang et al. (2007) the LB method was extended
to simulate thermal micro-flow within the transition regime by
Zhang and his cooperators. In their model, a correction function
was introduced to account for the reduction in the mean free path
near a wall.

As the device size shrinks to the micro-scale, the physics at solid
surfaces play a critical role in microfluidic transport since the rel-
ative importance of surface forces increases, for example, the van
der Waals force in the interaction of gas molecules and surface
atoms (Myong et al., 2005). Modeling the molecular interaction be-
tween gas particles and the solid-surface atoms is accomplished by
a boundary condition in any computational approach. Conse-
quently, to employ LB models in simulation of micro-flows, the
most important key issue is how to treat the slip (jump) boundary
condition (Tian et al., 2007; Zhang et al., 2007; Kuo and Chen,
2008). In almost all existing studies with the LB method, the Max-
well model (Maxwell, 1879) is popularly used in slip boundary
conditions to describe the slip phenomenon in rarefied gas flow.
The velocity slip (temperature jump) in the Maxwell model is
determined by the accommodation coefficients, Knudsen number,
and the gradient of velocity (temperature). The main disadvantage
of the Maxwell model lies in the fact that the choices of the accom-
modation coefficients, which just are free parameters based on the
concept of diffusive reflection, have a large impact on the final re-
sults (Kim et al., 2007). The so-called Reynolds analogy between
heat transfer and momentum transfer was not longer preserved
in the Maxwell model (Myong et al., 2006). Furthermore, it was re-
ported that the slip velocity can become unbounded in certain case
(Choi et al., 2005; Kim et al., 2007). And the results obtained by the
Maxwell model may deviate significantly with the benchmark val-
ues (Kim et al., 2007).

Recently, Myong (2004), Myong et al. (2006) developed a new
slip model based on the theory of adsorption phenomena pio-
neered by Langmuir (1933). According to Langmuir’s theory, gas
molecules do not reflect directly, but rather reside on the surface
for a brief period of time due to the intermolecular forces between
the gas molecules and the surface atoms. After some lag in time,
these molecules may reflect from the surface. This time lag causes
macroscopic velocity slip. This new model, named as ‘‘the Lang-
muir slip model” in which the information on the shear stress or
velocity gradient at the wall is not required, has been successfully
applied to several flow problems of interest (Myong et al., 2005,
2006). Furthermore, it has been shown that this Langmuir slip
model recovers the Maxwell model in its first-order approximation
and therefore a physical meaning can now be assigned to the
accommodation coefficients in the Maxwell model (Myong et al.,
2005).

But surprising, there is no attempt to introduce the Langmuir
slip model into the LB method for thermal micro-flow simulations.
To the best knowledge of the present authors, to date there is only
two publications (Kim et al., 2007; Chen and Tian, 2009) on using
the LB method with the Langmuir slip model for microfluidics. In
Kim et al. (2007), the authors showed how to implement the Lang-
muir slip model by bounce-back scheme. However, the transfor-
mation matrixes in the scheme are complicated, especially for 3D
problems, and can hardly be extended for curvilinear walls (Kim
et al., 2007). Chen and Tian (2009) also designed a boundary
scheme based on the Langmuir slip model, but their discussion is
limited in isothermal cases.

In the present study, we discuss a simple implementation of
the Langmuir slip model for the LB method to simulate micro-
flow with temperature difference. For convenience, a LB model
for thermal micro-flow recently developed by the present
authors (Tian et al., 2007) is employed in the present study.
The implementation of this scheme is straightforward and some
existing LB boundary schemes for macroscopic thermal flows
(Chen and Krafczyk, 2009; Chen et al., 2007; Tang et al., 2005)
can be naturally recovered from the present scheme when
Kn! 0. The feasibility and the capability of the present scheme
for thermal micro-flow simulations are explored by numerical
experiments.

The rest of the paper is organized as follows. The LB model for
thermal micro-flow is briefly reviewed in Section 2. In Section 3,
the implementation of Langmuir slip model is introduced, together
with a brief comment on the shortcoming of Maxwell slip model.
Results and discussion are presented in Section 4. Conclusion is
made in the last section.
2. Thermal LB Model for micro-flow

2.1. Evolving equations

The evolving equations of the LB model for micro-flow with
temperature difference developed in our previous work (Tian
et al., 2006, 2007), which based on He’s model (He et al., 1998)
to describe the effect of viscous heat dissipation in micro-flow,
read:
~fiðxþ ciMt; t þ MtÞ � ~fiðx; tÞ ¼ �
Mt

sf þ 0:5Mt
½~fiðx; tÞ � f eq

i ðx; tÞ� ð1Þ

~giðxþ ciMt; t þ MtÞ � ~giðx; tÞ

¼ � Mt
sg þ 0:5Mt

½ ~giðx; tÞ � geq
i ðx; tÞ� �

sgMt
sg þ 0:5Mt

fiZi ð2Þ
In the LB model, each evolving equation of Eqs. (1) and (2) consists
of two computational steps
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collision : ~fi
þðx; tÞ ¼ ð1� gf Þ~fiðx; tÞ þ gf f

eq
i ðx; tÞ;

streaming : ~fiðxþ ciDt; t þ DtÞ ¼ ~fi
þðx; tÞ; ð3Þ

collision : ~gi
þðx; tÞ ¼ ð1� ggÞ~giðx; tÞ þ gggeq

i ðx; tÞ � ggsgfiZi;

streaming : ~giðxþ ciDt; t þ DtÞ ¼ ~gi
þðx; tÞ; ð4Þ

where gf ¼ Mt
sfþ0:5Mt and gg ¼ Mt

sgþ0:5Mt.

The new variables ~fi and ~gi are defined as followed:

~fi ¼ fi þ
0:5Mt
sf
ðfi � f eq

i Þ ð5Þ

~gi ¼ gi þ
0:5Mt
sg
ðgi � geq

i Þ þ 0:5MtfiZi ð6Þ

where fi and gi are the density distribution function and internal en-
ergy density distribution function in the ith direction, respectively;
Mx and Mt are the lattice grid spacing and the time step; sf and sg

are the momentum and internal energy relaxation time; f eq
i and

geq
i are their corresponding equilibrium functions, for two-dimen-

sional nine-directional (D2Q9) square lattice (Fig. 1) with
c ¼

ffiffiffiffiffiffiffiffiffi
3RT

p
(where T is the average temperature and R is the univer-

sal gas constant), the equilibrium (internal energy) density distribu-
tions are chosen as:

f eq
i ¼ xiq 1þ 3ðci � uÞ

c2 þ 9ðci � uÞ2

2c4 � 3ðu � uÞ
2c2

" #
ð7Þ

geq
i ¼

xiqeð� 3ðu�uÞ
2c2 Þ; ði ¼ 0Þ

xiqe½1:5þ 3ðci �uÞ
2c2 þ 9ðci �uÞ2

2c4 � 3ðu�uÞ
2c2 �; ði ¼ 1—4Þ

xiqe½3þ 6ðci �uÞ
c2 þ 9ðci �uÞ2

2c4 � 3ðu�uÞ
2c2 �; ði ¼ 5—8Þ

8>><
>>: ð8Þ

with the weight factors: x0 ¼ 4=9; x1—4 ¼ 1=9, and x5—8 ¼ 1=36.
And the internal energy density is qe ¼ qRT (in 2D), ci is the particle
discrete velocity, for square lattice model:

ci ¼
ð0; 0Þ; ði ¼ 0Þ
ðcosði� 1Þp=2; sinði� 1Þp=2Þc; ði ¼ 1—4Þffiffiffi

2
p
ðcosði� 5Þp=2þ p=4; sinði� 5Þp=2þ p=4Þc; ði ¼ 5—8Þ

8><
>:

ð9Þ

The term Zi ¼ ðci � uÞ � ½@u=@t þ ðci � rÞu� represents the effect of
viscous heating and can be expressed as (Tian et al., 2006, 2007):

Zi ¼
ðci � uÞ � ½uðxþ Mx; t þ MtÞ � uðx; tÞ�

Mt
ð10Þ

And the macroscopic density q, velocity u, internal energy per unit
mass e, kinematic viscosity mf , and thermal diffusivity D can then be
obtained from the following equations (Tian et al., 2006):
0(O,W) 1

2

3

4

56

7 8

solid wall

A
B

C

D E

Fig. 1. Schematic plot of the D2Q9 lattice at a wall boundary.
q ¼
X

i

~fi qu ¼
X

i

ci
~fi qe ¼

X
i

~gi � 0:5Mt
X

i

fiZi

mf ¼ sf c2
s D ¼ 2sgc2

s

where c2
s ¼ c2=3.

2.2. Relaxation time and Knudsen number

In order to simulate the micro-flow by the LB method, the first
step is to define the relation between the Knudsen number Kn and
the relaxation time s. As we know, in the kinetic theory, the kine-
matic viscosity is mf ¼ 0:5�ck (where the mean molecule velocity
�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT=p

p
). Combined with the kinematic viscosity expression

of the LB method, we can gain the final simplified relation for the
standard D2Q9 lattice BGK model (Tian et al., 2006, 2007):

Kn ¼
ffiffiffiffi
p
6

r
� s
HMt

ð11Þ

No free parameter needs to be adjusted in order to produce desir-
able simulation results in this model. Here, we need to emphasize
that the Knudsen number relation expression differs among various
lattice models. The detailed discussion can be found in Tian et al.
(2007, 2006) and references therein.

3. Langmuir model for velocity slip and temperature jump
boundary condition

3.1. Maxwell slip model

The idea of the Maxwell model is to make a correction of slip
based on the degree of nonequilibrium near the wall surface which
can best be represented via the shear stress (Maxwell, 1879). The
following slip (jump) boundary condition is proposed:

uslip ¼ rKn
@u
@y

� �
w

; ð12Þ

Tjump ¼ /
2c

cþ 1

� �
Kn
Pr

� �
@T
@y

� �
w

;

where c is the specific heat ratio and Pr is the Prandtl number.
r ¼ 2�rv

rv
and / ¼ 2�/T

/T
; the tangential-momentum-accommodation

coefficient rv is defined as the fraction of molecules reflected diffu-
sively, and /T is the thermal-accommodation coefficient. It is clear
that the accommodation coefficients in the Maxwell model do not
depend explicitly on the properties at wall, such as wall tempera-
ture. In practical simulations, the values of these two coefficients
are chosen according to available results obtained by other means,
for example, from experimental data (Tian et al., 2007; Sofonea and
Sekerka, 2005; Myong et al., 2005). There are two problems may
hinder the applications of this model: first, in most situations we
have no prior knowledge on what the values of accommodation
coefficients should be (Reese et al., 2003; Myong, 2004), and second,
when the temperature jump is taken into account, a more compli-
cated picture is revealed: that heat transfer can increase or decrease
with increasing rarefaction, depending on the ratio of thermal
accommodation to momentum accommodation, so the Reynolds
analogy between heat transfer and momentum transfer is not pre-
served any more (Myong et al., 2006).

3.2. Langmuir slip model

An alternative approach to describe the slip (jump) can be
developed by taking into account the interfacial interaction
between the gas molecules and the surface atoms. In this approach
the gas molecules are assumed to interact with the surface of the
solid via a long range attractive force. Consequently the gas
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molecules can be adsorbed onto the surface, and then desorbed
after some time lag. This mechanism of the deposition of a layer
with a thickness of one or more molecules onto the surface is
known as adsorption in the literature of surface chemistry (Lang-
muir, 1933). One can model this interaction as a chemical reaction
in which the gas molecule, m, and the site, s, form the complex, c,
we may obtain an expression for the fraction of the surface covered
by adsorbed atoms at thermal equilibrium, a:

a ¼ bp
1þ bp

ð13Þ

for monatomic gases and

a ¼
ffiffiffiffiffiffi
bp

p
1þ

ffiffiffiffiffiffi
bp

p ð14Þ

for diatomic gases. Where

b ¼ K
kBTw

; K ¼ Cc

CmCs

and p is the pressure. kB is the Boltzmann constant. The equilibrium
constant, K, which are functions of the concentrations Cm;s;c and the
wall temperature Tw. As the pressure increases, the value of a ap-
proaches unity, implying that most of the molecules are at thermal
equilibrium (Myong et al., 2006).

With information about the fraction of the surface covered at
equilibrium determined by this adsorption isotherm, in the Lang-
muir slip model the velocity slip and temperature jump can be ex-
pressed as (Myong, 2004; Myong et al., 2006):

uslip ¼ ð1� aÞug þ auw

Tjump ¼ ð1� aÞTg þ aTw ð15Þ

where the subscript w denotes a local value at the wall. And g rep-
resents that adjacent to the wall, for example, a mean free path
away from the wall, or a reference value such as the free-stream
condition (Myong et al., 2006). In the incompressible limit b takes
the form (Myong, 2004):

b ¼ Ak
kBTwKn

exp
De

kBTw

� �
¼ 1

4xKn
ð16Þ

where A the mean area of a site and

x ¼ x0ðmÞ
Tw

Tr

� �1þ2=ðm�1Þ

exp � De

kBTw

� �
;

x0ðmÞ ¼
8
ffiffiffi
2
p

5p
A2ðmÞC 4� 2

m� 1

� �
ð17Þ

where the subscript r denotes a reference value. m is the exponent of
the inverse power laws. De, whose value varies with the type of gas
and the nature of the wall material, is the potential energy of heat
adsorption. The detailed values of De; A2ðmÞ, and x0ðmÞ can be found
in Myong et al. (2006). The role of the coefficient x, which is a func-
tion of m; Tw, and De, is very similar to the slip coefficient, r, in the
Maxwell model but its value can be determined with a clear phys-
ical explanation prior to simulations (Myong et al., 2005).

3.3. Implementation of Langmuir slip model in the LB method

The task of boundary treatment is to evaluate the virtual un-
known (internal energy) density distribution function coming from
outside the flow domain before the streaming step (Chen and Doo-
len, 1998). Usually the bounce-back scheme is employed, not only
for macroscopic hydrodynamics (Chen and Doolen, 1998) but also
for microfluidics (Kim et al., 2007). However, this scheme is origi-
nally designed for flat walls, and when used for curved walls, the
boundaries must be represented by lattice nodes. As a result, the
boundaries usually become jagged and will introduce some addi-
tional errors (Chen and Krafczyk, 2009).

In this section we design a different strategy to implement the
Langmuir slip model for the LB method. For simplicity, we consider
the case of a flat boundary in which grid nodes are located, namely
the solid wall node w overlaps with the boundary node O, as Fig. 1
illustrates. The DOE line lies at the boundary, and the nodes A, B,
and C are those lying in the fluid. At the boundary node O, before
streaming step, the (internal energy) density distribution functions
in c2; c5, and c6 directions (i.e. ~fþ2;5;6 and ~gþ2;5;6) are unknown and
must be closed by the boundary scheme. Following we take ~fþ2
and ~gþ2 as the representatives for illustration and the others can
be handled in the same way.

According to the Chapman–Enskog method, the (internal en-
ergy) density distribution function can be decomposed into its
equilibrium and nonequilibrium parts (Chen and Doolen, 1998):

~fiðx; tÞ ¼ f eq
i ðx; tÞ þ f neq

i ðx; tÞ; ð18Þ

~giðx; tÞ ¼ geq
i ðx; tÞ þ gneq

i ðx; tÞ;

where the superscript neq denotes the nonequilibrium part of the
(internal energy) density distribution function. Thus the post-colli-
sion (internal energy) density distribution function in c2 direction at
the boundary node O can be assumed as (Tang et al., 2005)

~f2
þðO; tÞ ¼ Feq

2 ðO; tÞ þ ð1� gf ÞF
neq
2 ðO; tÞ; ð19Þ

~g2
þðO; tÞ ¼ Geq

2 ðO; tÞ þ ð1� ggÞG
neq
2 ðO; tÞ � ggsgf2Z2;

In conformity to the Langmuir model Eq. (15), the natural choices
for Feq

2 ðO; tÞ and Geq
2 ðO; tÞ are

Feq
2 ðO; tÞ ¼ af eq

2 ðW; tÞ þ ð1� aÞf eq
2 ðB; tÞ; ð20Þ

Geq
2 ðO; tÞ ¼ ageq

2 ðW; tÞ þ ð1� aÞgeq
2 ðB; tÞ;

and

Fneq
2 ðO; tÞ ¼ af neq

2 ðW; tÞ þ ð1� aÞf neq
2 ðB; tÞ; ð21Þ

Gneq
2 ðO; tÞ ¼ agneq

2 ðW; tÞ þ ð1� aÞgneq
2 ðB; tÞ;

First we discuss how to calculate the equilibrium parts, namely Eq.
(20). At time t, the macroscopic quantities of the flow, such as veloc-
ity, temperature, and mass density, are known at the fluid node B,
so the equilibrium part of (internal energy) density distribution
function (i.e. f eq

2 ðB; tÞ and geq
2 ðB; tÞ) can be determined straightfor-

wardly. For f eq
2 ðW; tÞ and geq

2 ðW; tÞ, with the velocity and tempera-
ture condition in which uðW; tÞ and TðW; tÞ are known but qðW; tÞ
is unknown, the approximation proposed in Refs. (Tang et al.,
2005, 2007; Chen and Krafczyk, 2009) is adopted

f eq
2 ðW; tÞ ¼ f eq

2 ðqðBÞ;uðWÞ; TðWÞ; tÞ þ Oðe2Þ; ð22Þ

geq
2 ðW; tÞ ¼ geq

2 ðqðBÞ;uðWÞ; TðWÞ; tÞ þ Oðe2Þ;

where e is a slight quantity (Tian et al., 2007).
Now we discuss the determination of the nonequilibrium parts

Fneq
2 ðO; tÞ and Gneq

2 ðO; tÞ. The nonequilibrium parts of the distribu-
tions at node B can be given by

f neq
2 ðB; tÞ ¼ f2ðB; tÞ � f eq

2 ðB; tÞ; ð23Þ
gneq

2 ðB; tÞ ¼ g2ðB; tÞ � geq
2 ðB; tÞ;

Note that f neq
2 ðW; tÞ ¼ f neq

2 ðB; tÞ þ Oðe2Þ and gneq
2 ðW; tÞ ¼ gneq

2 ðB; tÞþ
Oðe2Þ (Tang et al., 2005, 2007; Chen and Krafczyk, 2009), so
f neq
2 ðW; tÞ and gneq

2 ðW; tÞ can be approximated by a first-order
extrapolation

f neq
2 ðW; tÞ ¼ f2ðB; tÞ � f eq

2 ðB; tÞ þ Oðe2Þ; ð24Þ
gneq

2 ðW; tÞ ¼ g2ðB; tÞ � geq
2 ðB; tÞ þ Oðe2Þ;



Table 1
Temperature jump at the top wall with different grid resolutions and Kn = 0.1.

20� 20 30� 30 40� 40 60� 60 Analytical solution

0.001207 0. 001208 0. 001209 0. 001209 0. 001215

S. Chen, Z. Tian / International Journal of Heat and Fluid Flow 31 (2010) 227–235 231
Eq. (24) implies that the accuracy of the approximation of
f neq
2 ðW; tÞ ðgneq

2 ðW; tÞÞ with the first-order extrapolation scheme
based on f neq

2 ðB; tÞ ðg
neq
2 ðB; tÞÞ is indeed of second-order.

With the aid of Eqs. (23) and (24), Eq. (21) reduces

Fneq
2 ðO; tÞ ¼ f2ðB; tÞ � f eq

2 ðB; tÞ þ Oðe2Þ; ð25Þ
Gneq

2 ðO; tÞ ¼ g2ðB; tÞ � geq
2 ðB; tÞ þ Oðe2Þ;

Therefore, according to Eqs. (20) and (25),the final expression of Eq.
(19) reads:

~f2
þðO; tÞ ¼ af eq

2 ðqðBÞ;uðWÞ; TðWÞ; tÞ þ ð1� aÞf eq
2 ðB; tÞ

þ ð1� gf Þ½f2ðB; tÞ � f eq
2 ðB; tÞ� þ Oðe2Þ; ð26Þ

~g2
þðO; tÞ ¼ ageq

2 ðqðBÞ;uðWÞ; TðWÞ; tÞ þ ð1� aÞgeq
2 ðB; tÞ

þ ð1� ggÞ½g2ðB; tÞ � geq
2 ðB; tÞ� � ggsgf2ðW; tÞZ2ðW; tÞ

þ Oðe2Þ;

The pressure boundary condition(heat flux boundary condi-
tion), in which the pressure pðW; tÞ(heat flux q) is known instead
of uðW; tÞ (temperature T), can be handled in the same way. The
details can be found in Tian et al. (2007); Chen et al. (2007); Tang
et al. (2005) and the references therein.

When Kn! 0, namely a! 1 (see Eqs. (13) and (16)), the previ-
ous LB boundary schemes for macroscopic thermal flows (Chen
and Krafczyk, 2009; Chen et al., 2007; Tang et al., 2005) can be
recovered naturally from the present scheme. Furthermore, there
are two additional obvious advantages of the present scheme:
First, although its formation is first-order extrapolation, this
scheme possesses second-order accuracy, so both computational
stability and numerical accuracy are preserved, and second, the
implementation of this scheme is straightforward and can be easily
extended for curved walls (Tang et al., 2005; Guo et al., 2002).

If the solid wall node w does not overlap with the boundary
node O, Eq. (26) has to be modified slightly. We will show the mod-
ification in the next section by an instance.
Fig. 2. Velocity profile: solid line, analytical solution; pentacle, Kn = 0.01; dot,
Kn = 0.05; square, Kn = 0.1.

Fig. 3. Temperature profile: solid line, analytical solution; pentacle, Kn = 0.01; dot,
Kn = 0.05; square, Kn = 0.1.
4. Numerical results

In order to validate the present scheme, two-dimensional planar
thermal micro-Couette flows with different temperature boundary
conditions are simulated with variable Kn. Two infinite parallel
plates are separated by a distance H ¼ 1:0. The upper plate at
y ¼ H moves at a constant velocity U0 ¼ 0:1c, while the bottom plate
is at rest. Their temperatures are Tw1 and Tw0, respectively, and the
average temperature is T ¼ 0:5ðTw1 þ Tw0Þ. x ¼ 1=4 and p ¼ 1:0
are chosen to evaluate a through Eq. (13). Periodic boundary condi-
tions are applied at the inlet and outlet of the channel. In the simu-
lation, we assume that the density and temperature variations
across the channel are small enough for the value of the Knudsen
number to be considered constant and the vertical velocity is zero
everywhere. In this case, the non-dimensionalized density q, tem-
perature T and velocity fields depend only on the y coordinate.
And the thermal creep term, which is generated by the temperature
gradient along x direction, can be also neglected. The whole compu-
tational domain is discretized with uniform square grids.

According to above assumptions, the analytical solutions of
velocity and temperature profiles with viscous heat dissipation
read (Tian et al., 2006):

uðyÞ ¼ U0
y=H þ Kn
1þ 2Kn

ð27Þ

TðyÞ ¼ C0
y
H

� �2
þ C1

y
H

� �
þ C2 ð28Þ

where C0 ¼ �0:5 ~U0
2Pr; C1 ¼ 0:5 ~U0

2Prþ Tw1�Tw0
2Knþ1 ; C2 ¼ Tw0 þ Kn � C1

and ~U0 ¼ U0=ð1þ 2KnÞ.
4.1. Micro-Couette flow with constant wall temperature

The first case is the micro-Couette flow with constant wall tem-
perature boundary condition ðTw1 ¼ Tw0 ¼ Tw ¼ 1:0Þ. The initial
fluid velocity is zero and temperature is equal to the wall temper-
ature Tw. In order to obtain grid-independent results, in the present
study, four different grid resolutions 20� 20; 30� 30; 40� 40,
and 60� 60 are used. As Table 1 shows, the grid resolution
40� 40 is fine enough for the present simulation. For the first case,
c is determined by

c ¼
ffiffiffiffiffiffiffiffiffi
3Tw

p
ð29Þ

Figs. 2 and 3 show the linear velocity profile and the parabolic tem-
perature profiles, respectively, with Kn varying from 0.01 to 0.1. The
three curves represent Kn = 0.01, 0.05, and 0.1, respectively. The so-
lid lines are analytical results and the scatter points are numerical
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simulation results. All of them are matched pretty well. We also find
the velocity slip and temperature jump at the boundary increase
with Kn increasing, which agree with that in Tian et al. (2006).

Fig. 4 illustrates the convergence behavior of the present model
with different grid resolutions and Kn. The slopes of straight lines
in Fig. 4 are 1.95 (line of Kn = 0.1), 1.97 (line of Kn = 0.05) and 1.96
(line of Kn = 0.01). The relative global error is measured at the stea-
dy state between the numerical solution and the analytical solu-
tion u� given by Eq. (27) and is defined by
UError ¼
RXju� u�j

RXju�j
ð30Þ
where the subscript X means the whole computational domain. The
data demonstrate that the accuracy of the present model is second-
order indeed.

In this validation section, we consider the situation that the so-
lid wall node w does not overlap with the lattice node O. As shown
in Fig. 5, the stationary solid wall cuts across the lattice links with
distance M ¼ xf�xw

xf�xb
. There are many publications (Guo et al., 2002;

Fillipova and Hanel, 1998; Mei et al., 1999; Chun and Ladd, 2007)
discussing how to treat this kind of situation. In the present study,
inspired by the ideas proposed in Guo et al. (2002); Chun and Ladd
(2007), a general extrapolation equilibrium boundary scheme is
designed, namely only the equilibrium parts of Eq. (26) (the first
two terms in the right hand of Eq. (26), namely Eq. (20)) should
be extrapolated according to M as
Fig. 4. Convergence behavior with different grid resolution and Kn.

x
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j=Ny

j=0
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wx

bx
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Fig. 5. The configuration of computational domain.
Feq
2 ðO; tÞ ¼

2
1þ M af eq

2 ðW; tÞ þ ð1� aÞf eq
2 ðB; tÞ

	 

þ M� 1

1þ M f eq
2 ðM; tÞ;

Geq
2 ðO; tÞ ¼

2
1þ M ageq

2 ðW; tÞ þ ð1� aÞgeq
2 ðB; tÞ

	 

þ M� 1

1þ M geq
2 ðM; tÞ;

ð31Þ

when 0 < M < 0:75 and

Feq
2 ðO; tÞ ¼

1
M
½af eq

2 ðW; tÞ þ ð1� aÞf eq
2 ðB; tÞ� þ

M� 1
M

f eq
2 ðB; tÞ; ð32Þ

Geq
2 ðO; tÞ ¼

1
M
½ageq

2 ðW; tÞ þ ð1� aÞgeq
2 ðB; tÞ� þ

M� 1
M

geq
2 ðB; tÞ;

when 0:75 6 M 6 1. The nonequilibrium parts Fneq
2 ðO; tÞ and

Gneq
2 ðO; tÞ are still obtained by Eq. (25). Figs. 6 and 7 shows the vari-

ations of global error versus 1=s for different M with grid resolution
40� 40. One can see the maximum of global error (defined in Eq.
(30)) is less than 6% even when M is very small, which demonstrates
the numerical stability and accuracy of the present scheme.

4.2. Micro-Couette flow with different wall temperatures

The second case is the micro-Couette flow with different wall
temperatures. The temperature difference between the wall is
determined by the Eckert Ec number, which is defined as:

Ec ¼ U2
0

cpMT
ð33Þ
Fig. 6. Global error versus 1=s : M ¼ 0:2.

Fig. 7. Global error versus 1=s : M ¼ 0:9.



Fig. 10. Temperature profile of Ec = 3.0: solid line, analytical solution; pentacle,
Kn = 0.01; dot, Kn = 0.05; square, Kn = 0.1.

S. Chen, Z. Tian / International Journal of Heat and Fluid Flow 31 (2010) 227–235 233
cp ¼ 1:0 is the specific heat. Combined with U0 ¼ 0:1c and the def-
initions of c and Ec, we can finally obtain the expression of c only
related with Ec (Tian et al., 2006):

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3� 0:005

Ec

q ð34Þ

After c has been known, other parameters (such as U0 and MT) can
be calculated out easily. Fig. 8 shows the dimensionless tempera-
ture profile at Ec = 1.0 with Kn = 0.01, 0.05, and 0.1, respectively.
The temperature distribution is almost straight line because MT is
relatively large and the influence of the viscous heat dissipation is
relatively very small at low Ec. The wall temperature jump in-
creases with the increasing of Kn. When Ec increases to 2.0, as
shown in Fig. 9, the lines curve obviously. This results from the ef-
fect of viscous heat dissipation beginning to become notably. The
temperature jump at the bottom wall is larger than that of
Ec = 1.0 at the same Kn. While the temperature at top boundary is
lower than that of Ec = 1.0 at the same Kn, which is more closer
to the point of 1.0.

When the Ec increases to 3.0 in succession as illustrated in
Fig. 10, we find that the fluid temperature near the top wall bound-
ary is very close to 1.0 with different Kn. It means that the temper-
ature jump at the top wall boundary is almost zero. When the Ec is
5.0, as shown in Fig. 11, the temperature at the upper part of the
field is higher than that at the top boundary and the temperature
Fig. 8. Temperature profile of Ec = 1.0: solid line, analytical solution; pentacle,
Kn = 0.01; dot, Kn = 0.05; square, Kn = 0.1.

Fig. 9. Temperature profile of Ec = 2.0: solid line, analytical solution; pentacle,
Kn = 0.01; dot, Kn = 0.05; square, Kn = 0.1.
jump on the top boundary is negative. The phenomena observed
from the present scheme are in agreement with that in previous
studies (Tian et al., 2006).

To test our scheme further, we simulate the case of larger Ec,
which is illustrated in Fig. 12. The results are still in good agreement
Fig. 11. Temperature profile of Ec = 5.0: solid line, analytical solution; pentacle,
Kn = 0.01; dot, Kn = 0.05; square, Kn = 0.1.

Fig. 12. Temperature profile of Ec = 10.0: solid line, analytical solution; pentacle,
Kn = 0.01; dot, Kn = 0.05; square, Kn = 0.1.



Fig. 13. Average Nusselt number Nu at the top wall versus Knudsen number Kn:
dash line, Ec = 10.0; solid line, Ec = 1.0.

Fig. 14. Average Nusselt number Nu at the bottom wall versus Knudsen number
Kn: dash line, Ec = 10.0; solid line, Ec = 1.0.
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with the analytic results. It validates the capability of the present
scheme for computing micro-flow with high Ec.

Figs. 13 and 14 illustrate the average Nusselt numbers (Nu) at
the top and bottom walls, versus Kn, in which the cases Ec = 10.0
and Ec = 1.0 are chosen for the representatives. It can be seen that
the heat transfer, represented by Nu, always decreases with
increasing rarefaction. Therefore the Reynolds analogy is really
preserved in the present scheme. From these two figures, it is also
clear that the decrease of Nu with higher Ec is much faster than
that with lower Ec.
5. Conclusion

In almost all existing studies using the LB method to investigate
microfluidics, the popular Maxwell slip model is employed to cap-
ture the velocity slip and temperature jump. However, recently
some debates on the shortcoming of Maxwell slip model were
emergent and a good alternative, the Langmuir slip model, was
developed as the remedy.

In the present study, we discuss how to implement the Lang-
muir slip model for the LB method to capture velocity slip and tem-
perature jump in micro-flows with temperature difference. There
are two obvious advantages of the present scheme: first, it has bet-
ter physical relevancy, and some previous LB boundary schemes
for macroscopic thermal flows can be naturally recovered from
the present scheme when the Knudsen number Kn! 0; second,
the implementation of this scheme is straightforward.

The feasibility and the capability of the present scheme are ex-
plored by simulating thermal micro-Couette flows with different
temperature boundary conditions. The numerical results agree
well with the analytical solutions and the Reynolds analogy is
preserved.

In the next work, we will validate its performance for curvilin-
ear boundaries by simulating thermal micro-flows in circular
pipes.
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